Gateway to Improved Cancer Treatment

Scientific Program and Abstracts

Adam's Mark Hotel • April 20-24, 2004 • St. Louis, Missouri USA
Hyperthermia is one of the most potent cellular radiosensitizers known. Hyperthermia is known to alter protein folding and alter protein-protein associations in the cell. In contrast, the lethal effects of radiation exposure are believed to result from damage to DNA, specifically DNA double-strand breaks and double-strand breaks. Thus, it is commonly believed that heat effects on the proteins involved in DNA repair pathways are responsible for heat-induced radiosensitization. Our previous studies have shown that after a radiosensitizing thermal exposure in human colon adenocarcinoma NSY cells 1) about 60% of the total amount of the DNA repair protein, Mre11, was delocalized from the nucleus into the cytoplasm; 2) much of the remaining nuclear Mre11 formed aggregates with the nuclear matrix; 3) Mre11 was disassociated from its functional partner and 4) there was an induced association between Hsp70 and Mre11. Therefore, we hypothesize that reduced availability of DNA repair protein Mre11 for the repair of damaged DNA is a basis for thermal radiosensitization induced by moderate hyperthermia. To test this hypothesis we measured the total amount of Mre11 DNA repair protein and its heat-induced alterations in four human tumor cell lines requiring different heating times at 41°C to induce measurable radiosensitization. The results show that the larger the amount of Mre11 protein in cells, the longer the heating time at 41°C required to induce radiosensitization and the heat doses required for delocalization of Mre11 protein from the nucleus are correlated with that needed to induce significant thermal radiosensitization in the four human tumor cell lines. Further, the extent of radiosensitization correlates with the extent and association between Hsp70 and Mre11. These observations are consistent with the possibility that the heat effects on Mre11 are necessary for cells to be radiosensitized. Support CA 075556035S1 and CA7163807.

Electrochemical Treatment Induces Apoptosis in Each Tumor of Mice

Yeun-Hwa Gu, O.M.D.1, Hiroaki Tanabe, M.S.1, Ki-Mun Kang, M.D.2, Takeo Hasegawa, Ph.D.1 and Ihl-Bohng Choi, M.D.3
1Department of Radiological Technology Science, Suzuki University of Medical Science, 1001-1 Kishioka Cho, Suzuka City, Mie 510-0293 Japan
2Department of Therapeutic Radiology, Gyeongsang National University Hospital, 1Gyeongsang Institute of Health Sciences, Jinju,
3Department of Radiation Oncology, The Catholic University of Korea, Seoul, South Korea.

Purpose:
Electrochemical treatment (ECT), called low-level direct current treatment is known to one of therapeutic potentials to many diseases in the field of cancer treatment. This study was basically designed to elucidate the relationship between ECT and the prevalence of apoptosis in tumor cells using histopathology.

Methods and Materials:
For the experiment, squamous cell carcinoma (SCC)-7 strain was transplanted into right upper thigh of C3H mice, and the considerable growth of the tumor was confirmed. ECT was done to the tumors and cellular changes were observed microscopically to examine the effect of the ECT with different direct current doses. In situ nick end labeling method was employed for the analysis of apoptosis.

Results:
A significant difference was found between the above 5 Coulomb treatment groups and the control group (p<0.05). In terms of tumor necrosis scores, there were significant differences between the 5 Coulomb treatment group and the 10 Coulomb treatment group, and the control group 24 hours after ECT (p<0.05, p<0.005). In the 5 Coulomb or the 10 Coulomb-treated group, there were noticeable increases in the number of apoptosis comparing the control group (p<0.01, p<0.01; p<0.01, p<0.01). Twenty-four hours after ECT, apoptosis of all treatment groups were significantly decreased more than in the control group (p<0.05, p<0.01, p<0.01).

Conclusion:
These results showed that the ECT could delay tumor growth of SCC-7. Particularly in the groups treated with 5 and 10 Coulomb of ECT, the number of apoptosis in tumor mass was significantly increased more than in the control group during the period of experiment; and it suggests that the apoptosis is directly related with the histopathologically destructive changes of tumor cells after ECT.

Evaluation of Quality of Life (QOL) in concurrent hyperthermia therapy for Head and Neck cancer using a EF-2001 Lactic Acid Bacteria (BeRMKAIN)

Yeun-Hwa Gu, O.M.D.1, Ihl-Bohng Choi, M.D.2, Takeo Hasegawa, Ph.D.1, Hroyuki Iwasa3 and C.W. Song Ph.D.4
1Department of Radiological Technology Science, Suzuki University of Medical Science, 1001-1 Kishioka
Fever-Range Thermal Exposure can Substitute for CD28 Co-Signaling to Promote IL-2 Secretion and Lipid Raft Reorganization

Min Yuan, James Clements, Ph.D. and Elizabeth A. Repasky, Ph.D.
Immunology Department in Roswell Park Cancer Institute, Buffalo, NY, 14263

Mild (Fever-range) whole body hyperthermia has been confirmed to delay or slow tumor growth in several mouse models including those of metastatic tumor growth, and is being evaluated in clinical trials for patients with cancer. The exact mechanism by which mild hyperthermia helps to control tumor growth is not well established. One potential possibility is that a fever-like state can help activate the anti-tumor immune response. In this project, we have been testing whether mild thermal stress alters the activation potential of T cells, and/or the organization of their lipid rafts. It is generally accepted that two signals are needed to fully activate resting T cells: the first involves T cell receptor (TCR) ligation while the second signal is mediated through engagement of a “co-stimulatory” receptor, such as CD28. A dramatic reorganization of lipid “rafts” within the plasma membrane is also a hallmark of productive T cell activation. For this study, we are using cells of the Jurkat T cell line, which require two receptor-mediated signals to become activated (as measured by IL-2 secretion) and are also known to undergo lipid raft reorganization upon TCR ligation. Following mild thermal exposure (39.5°C for 6 hrs), we observed that Jurkat T cells could be activated to secrete IL-2 following TCR ligation in the absence of CD28 co-engagement. On the other hand, thermal exposure did not lead to activation when followed by only CD28-ligation. We also observed that fever-range hyperthermia promotes lipid raft aggregation in the absence of any receptor ligation; 80-85% Jurkat T cells were observed to have aggregated lipid rafts after thermal exposure alone. These data suggest that mild thermal stress may lower the activation threshold of T lymphocytes by its ability to selectively regulate membrane events (e.g., organization of membrane rafts) associated with activation. This research is being supported by NIH CA71599 and CA94043 grants.

Differential Sensitivity of Several Tumor Lines to a Doxorubicin Containing Low Temperature Sensitive Liposome: Microenvironmental Effects

Yulin Zhao, Yiting Cao, Fan Yuan, David Needham and Mark W. Dewhirst
Departments of Radiation Oncology, Biomedical Engineering and Mechanical Engineering and Material Sciences, Duke University Medical Center, Durham, North Carolina 27710